Protein Bioinformatics

Protein Bioinformatics, 1st Edition

From Sequence to Function

Protein Bioinformatics, 1st Edition,M. Michael Gromiha,ISBN9780123884244


Academic Press



Comprehensive and accessible survey of proteomics from fundamentals to latest research results supported by bioinformatics solutions

eBook Overview

VST (VitalSource Bookshelf) format

EPUB format

USD 77.95
Add to Cart

Key Features

Explains all aspects of proteins including sequence and structure analysis, prediction of protein structures, protein folding, protein stability, and protein interactions

Teaches readers how to analyze their own datasets using available online databases, software tools, and web servers, which are listed and updated on the book’s web companion page.

 Presents a cohesive and accessible overview of the field, using illustrations to explain key concepts and detailed exercises for students.


One of the most pressing tasks in biotechnology today is to unlock the function of each of the thousands of new genes identified every day. Scientists do this by analyzing and interpreting proteins, which are considered the task force of a gene. This single source reference covers all aspects of proteins, explaining fundamentals, synthesizing the latest literature, and demonstrating the most important bioinformatics tools available today for protein analysis, interpretation and prediction. Students and researchers of biotechnology, bioinformatics, proteomics, protein engineering, biophysics, computational biology, molecular modeling, and drug design will find this a ready reference for staying current and productive in this fast evolving interdisciplinary field.


Undergraduate and post graduate students enrolled in courses on bioinformatics, protein bioinformatics, proteomics, protein engineering, structural bioinformatics, computational biology.

Researchers in proteomics, bioinformatics, biophysics, computational biology, molecular modeling, and drug design

M. Michael Gromiha

Michael is a frequent invited speaker to local conferences and universities in India and to international conferences focused on bioinformatics, computational biology and molecular biology. He maintains close connections with research and teaching colleagues in India and contributes to international publications including handbooks, encyclopedias and journals. He began his research on Computational Molecular Biophysics in 1989, earning the PhD in BioPhysics from Bharathidasan University, India. He gained his first Post Doctoral experience on DNA bending and protein-DNA interactions at International Center for Genetic Engineering and Biotechnology (ICGEB), Italy. He developed databases for proteins and computer simulation of protein-DNA interactions during his subsequent postdoc at The Institute of Physical and Chemical Research (RIKEN), Japan. At AIST he continues to focus on various aspects of protein bioinformatics.

Affiliations and Expertise

Michael Gromiha, Senior Research Scientist at Computational Biology Center, National Institute of Advanced Industrial Science and Technology (AIST), Japan

Protein Bioinformatics, 1st Edition

1 Proteins

1.1 Building blocks

1.2 Hierarchical representation of proteins

1.3 Structural classification of proteins

1.4 Databases for protein sequences

1.5 Exercises

1.6 References

2. Protein Sequence Analysis

2.1 Sequence alignment

2.2 Programs for aligning protein sequences

2.3 Amino acid properties

2.4 Amphipathic character of a-helices and b-strands

2.5 Online tools for sequence analysis

2.6 Exercises

2.7 References

3 Protein Structure Analysis

3.1 Assignment of secondary structures

3.2 Computation of solvent accessibility

3.3 Representation of solvent accessibility

3.4 Residue-residue contacts

3.5 Amino acid clusters in protein structures

3.6 Contact potentials

3.7 Cation--p interactions in protein structures

3.8 Non canonical interactions

3.9 Free energy calculations

3.10 Amino acid properties derived from protein structural data

3.11 Parameters for proteins

3.12 Exercises

3.13 References

4. Protein Folding Kinetics

4.1 F value analysis

4.2 Experimental studies

4.3 Relationship between amino acid properties and F values

4.4 Hydrophobic clusters and long-range contact network in F value analysis

4.5 Kinetic database for proteins

4.6 Prediction of protein folding rates

4.7 Relationship between F values and folding rates

4.8 References

5. Protein Structure Prediction

5.1 Secondary structure

5.2 Protein structural class

5.3 Secondary structure content

5.4 Discrimination of transmembrane helical proteins and predicting their membrane spanning segments

5.5 Discrimination of transmembrane strand proteins

5.6 Identification of membrane spanning b -strand segments

5.7 Solvent accessibility

5.8 Inter-residue contact prediction

5.9 Protein tertiary structure prediction

5.10 Webservers for protein structure prediction

5.11 Exercises

5.12 References

6 Protein Stability

6.1 Determination of protein stability

6.2 Thermodynamic database for proteins and mutants

6.3 Relative contribution of non-covalent interactions to protein stability

6.4 Stability of thermophilic proteins

6.5 Analysis and Prediction of protein mutant stability

6.6 Exercises

6.7 References

7 Protein Interactions

7.1 Protein-protein interactions

7.2 Protein-DNA interactions

7.3 Protein-RNA interactions

7.4 Protein-ligand interactions

7.5 Exercises

7.6 References

Appendix A List of protein databases/webservers

Quotes and reviews

 A protein structure oriented bioinformatics book has been long overdue and I would like to congratulate Dr. Gromiha for his efforts to fill this gap.   Dr. Sandeep Kumar, Principle Scientist, Pharmaceutical Sciences, Research and Development, Global Biologics, Pfizer, Inc.

The book has excellent coverage for students wishing to practise bioinformatics   Dr. Debnath Pal, Assistant Professor, IISC Bangalore

Free Shipping
Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy

Contact Us