New Brain and Whole Body Tissue Clearing|Register Now
»
Three Dimensional Surface Topography
 
 

Three Dimensional Surface Topography, 1st Edition

 
Three Dimensional Surface Topography, 1st Edition,Ken Stout,Liam Blunt,ISBN9781857180268
 
 
 

  &      

Butterworth-Heinemann

9781857180268

9780080542980

320

216 X 140

Print Book + eBook

USD 255.00
USD 425.00

Buy both together and save 40%

Print Book

Hardcover

In Stock

Estimated Delivery Time
USD 220.00

eBook
eBook Overview

VST format:

DRM Free included formats: PDF

USD 205.00
Add to Cart
 
 

Description

This fully illustrated text explains the basic measurement techniques, describes the commercially available instruments and provides an overview of the current perception of 3-D topography analysis in the academic world and industry, and the commonly used 3-D parameters and plots for the characterizing and visualizing 3-D surface topography.

It also includes new sections providing full treatment of surface characterization, filtering technology and engineered surfaces, as well as a fully updated bibliography.

Readership

Readership: Manufacturing engineers, mechanical engineers, tribologists, precision engineers in both industry and research, engineering libraries in research and industrial organisations, senior level undergraduates and masters students in manufacturing engineering

Ken Stout

Liam Blunt

Professor Liam Blunt is Taylor Hobson Professor of Surface Metrology at the University of Huddersfield, UK. He is author of numerous published papers and other contributions on surface technology, and is co-author with Ken Stout of Three Dimensional Surface Topography (published by Penton Press, 2000).

Affiliations and Expertise

Taylor Hobson Professor of Surface Metrology at the University of Huddersfield, UK

View additional works by Liam Blunt

Three Dimensional Surface Topography, 1st Edition

Part I: Development of Surface Characterization
1. History of the subject 2. Development of surface parameters 3. Progress in filtering 4. Instrumentation 5. Development of integrated 3-D parameter set 6. Future Developments 7. Contents of the proposed standard. Part II: Instruments and Measurement Techniques of Three-dimensional Surface Topography
1. Introduction 2. Differences in measurement and analysis methods for 3-D and 3-D surface topography 3. Stylus instruments 4. Optical instruments 5. Non-optical scanning microscopy 6. Characteristics of the different types of available instruments 7. Conclusions. Part III: Filtering Technology for Three-Dimensional Surface Topography Analysis. 1. Nomenclature 2. Introduction 3. History of surface data filters 4. 3-D general filtering techniques 5. Robust filters 6. The problems of frequency domain filters 7. Wavelet digital filters 8. Motif filters 9. Conclusion. Part IV: Visualization Techniques and Parameters for Characterizing Three-Dimensional Surface Topography 1. Nomenclature 2. Introduction 3. Surface topography in three dimensions 4.Visualization techniques 5. Specification of parameters 6. A primary parameter set – amplitude, height distribution, spatial, hybrid and functional. Part V: Applications of Three-Dimensional Surface Metrology 1. Introduction 2. Measurement of a gear surface with a stylus lead screw-driven instrument 3. Measurement of an engine bore surface with a stylus linear motor-driven instrument 4. Measurement of thick-film superconductors with a focus detection instrument 5. Measurement of human skin with a focus detection instrument 6. Measurement of the topography of hip prostheses using phase shifting interferometer 7. Measurement of a polished brass surface using a scanning tunnelling microscope 8. Characterization of surface topography of indentations 9. Conclusions. Part VI: Engineered Surfaces - A Philosophy of Manufacture 1. A philosophy of manufacture 2. The complex interrelationships in producing an engineered surface 3. Surface topographical features and their effect on the functional performance of surfaces 4. Surface mechanical features that can effect the functional performance of surfaces (surface integrity) 5. Subsurface features that can effect the functional performance of surfaces 6. Some examples of engineered surfaces 7. Future approach to the engineered surface 8. An example of a comprehensive testing procedure 9. FE simulations 10. Final comments.
 
 

Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy
FAQ

Contact Us