Handbook of Convex Geometry

Handbook of Convex Geometry, 1st Edition

Handbook of Convex Geometry, 1st Edition,Gerard Meurant,ISBN9780444895974


North Holland




Print Book + eBook

USD 339.00
USD 565.00

Buy both together and save 40%

Print Book


In Stock

Estimated Delivery Time
USD 295.00

eBook Overview

DRM-free included formats : PDF

USD 270.00
Add to Cart


Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.

Information about this author is currently not available.

Handbook of Convex Geometry, 1st Edition

VOLUME B. Preface. Part 3: Discrete Aspects of Convexity. Geometry of Numbers (P.M. Gruber). Lattice points (P. Gritzmann, J.M. Wills). Packing and covering with convex sets (G. Fejes Tóth, W. Kuperberg). Finite packing and covering (P. Gritzmann, J.M. Wills). Tilings (E. Schulte). Valuations and dissections (P. McMullen). Geometric crystallography (P. Engel). Part 4: Analytic Aspects of Convexity. Convexity and differential geometry (K. Leichtweiss). Convex functions (A.W. Roberts). Convexity and calculus of variations (U. Brechtken-Manderscheid, E. Heil). On isoperimetric theorems of mathematical physics (G. Talenti). The local theory of normed spaces and its applications to convexity (J. Lindenstrauss, V. Milman). Nonexpansive maps and fixed points (P.L. Papini). Critical Exponents (V. Pták). Fourier series and spherical harmonics in convexity (H. Groemer). Zonoids and generalisations (P. Goodey, W. Weil). Baire categories in convexity (P.M. Gruber). Part 5: Stochastic Aspects of Convexity. Integral geometry (R. Schneider, J.A. Wieacker). Stochastic geometry (W. Weil, J.A. Wieacker). Author Index. Subject Index.
Free Shipping
Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy

Contact Us