Particle Breakage, 1st Edition

 
Particle Breakage, 1st Edition,Agba Salman,Mojtaba Ghadiri,Michael Hounslow,ISBN9780080553467
 
 
Up to
25%
off
 

Salman   &   Ghadiri   &   Hounslow   

Elsevier Science

9780080553467

1240

Gives an understanding of the state-of-the-art, and access to a wide range of principles. An academic outlook, blended with an industrial perspective!

eBook
eBook Overview

VST format:

DRM Free included formats: PDF

USD 311.25
USD 415.00
Add to Cart
 
 

Key Features

* Covering a wide range of subjects and industrial applications
* Allows the reader an understanding of the science behind engineered breakage processes
* Giving an unrestrictive and interdisciplinary approach

Description

Particle breakage is an important process within a wide range of solids processing industries, including pharmaceuticals, food, agricultural and mining. Breakage of particles can be defined as intentional and unintentional, depending on whether it is desired or not. Through understanding of the science and underlying mechanisms behind this phenomenon, particle breakage can be either minimised or encouraged within an efficient and effective process. Particle Breakage examines particle breakage at three different length scales, ranging from single particle studies through groups of particles and looking at solid processing steps as a whole. This book is the widest ranging book in the field and includes the most up-to-date techniques such as Distinct Element Method (DEM), Monte Carlo simulations and Population Balance Equations (PBE). This handbook provides an overview of the current state-of-the- art and particle breakage. From the small scale of a single particle, to the study of whole processes for breakage; both by experimental study and mathematical modelling.

Readership

A complete and comprehensive reference for academic and industrial researchers within the industry

Agba Salman

Affiliations and Expertise

Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield, UK

Mojtaba Ghadiri

Affiliations and Expertise

Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds, UK

Michael Hounslow

Affiliations and Expertise

The University of Sheffield, Mappin Street, Sheffield, UK

Particle Breakage, 1st Edition

I. Fundamental
1. Breakage of single particles: Quasi-static
(L. Marcelo Tavares).
2. Impact breakage of single particles: Double Impact Test (K.T. Chau, S.Z. Wu).
3. Particle breakage due to bulk shear (J. Bridgwater).
4. The principles of single-particle crushing (G. Unland).

II. Milling
5. Rotor impact mills (R. Nied).
6. Wet grinding in stirred media mills (A. Kwade, J. Schwedes).
7. Roller milling of wheat (G.M. Campbell).
8. Air jet milling (A. Chamayou, J.A. Dodds).
9. Breakage and morphological parameters determined by laboratory tests (M. Yekeler).
10.Selection of fine grinding mills (Toyokazu Yokoyama, Yoshiyuki Inoue).
11. Fine grinding of materials in dry systems and mechanochemistry (Qiwu Zhang et al.).
12. Comminution energy and evaluation in fine grinding (Yoshiteru Kanda, Naoya Kotake).
13. Enabling nanomilling through control of particulate interfaces (M. Sommer, W. Peukert).
14. Analysis of milling and the role of feed properties (Mojtaba Ghadiri et al.).

III. Modelling
15. Monte Carlo method for the analysis of particle breakage (B.K. Mishra).
16. Numerical investigation of particle breakage as applied to mechanical crushing (C.A.Tang, H.Y. Liu).
17. The cohesion of fractal agglomerates: an elementary numerical model (E. Pefferkorn).
18. The linear breakage equation: from fundamental issues to numerical solution techniques (M. Kostoglou).
19. Analysis of agglomerate breakage (M. Ghadiri et al.).
20. Modelling of mills and milling circuits (P. Toneva, W. Peukert).

IV. Applications
21. Particle strength in an industrial environment
(Dr. G.M.H. Meesters).
22. The strength of pharmaceutical tablets (I.C. Sinka et al.).
23. Crystal growth and dissolution with breakage: distribution kinetics modelling (Giridhar Madras , B.J. McCo).
24. Liberation of valuables embedded in particle compounds and solid waste (W. Schubert, J. Tomas).
25. Attrition in fluidised beds (R. Boerefijn et al.).
26. A mechanistic description of granule deformation and breakage (Y.S. Cheong et al.).
27. Descriptive classification: failure modes of particles by compression (I. Gabbott et al.).
28. A new concept for addressing Bulk Solids Attrition in Pneumatic Conveying (L. Frye).
 
 
Save up to 25% on all Books
Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy
FAQ

Contact Us