Nanoplasmonics, 1st Edition

From Fundamentals to Applications

Nanoplasmonics, 1st Edition,Hiroshi Masuhara,Satoshi Kawata,ISBN9780444522498

Masuhara   &   Kawata   

Elsevier Science




240 X 165

Presents practical instruction on the nature and mechanics of report writing for law enforcement, security, corrections, and probation personnel.

Print Book + eBook

USD 336.00
USD 560.00

Buy both together and save 40%

Print Book


In Stock

Estimated Delivery Time
USD 290.00

eBook Overview

VST (VitalSource Bookshelf) format

DRM-free included formats : EPUB, Mobi (for Kindle), PDF

USD 270.00
Add to Cart

Key Features

* interdisciplinary research text on the application of nanoplasmonics research and effects in devices for applications
* bridges the gap between conventional photophysics & photochemistry and nanoscience
* continuing the series that focuses on 'hot' areas of photochemistry, optics, material science and bioscience.


This second volume in the Handai Nanophotonics book series covers the area of Nanoplasmonics, a recent hot topic in the field of nanophotonics, impacting a diverse range of research disciplines from information technology and nanotechnology to the bio- and medical sciences. The interaction between photons and metal nanostructures leads to interesting and extraordinary scientific phenomena and produces new functions for nano materials and devices. Newly discovered physical phenomena include local mode of surface plasmon polariton excited in nanoparticles, hot spots on nano-rods and nano-cones, long range mode of surface plasmons excited on thin metal films, and dispersion relationship bandgaps of surface plasmons in periodic metal structures. These have been applied to, for example, single molecule detection and nano-imaging/spectroscopy, photon accumulation for lasing applications, optical nano-waveguides and nano-circuits.


For those studying or working in technology and nanotechnology to the bio- and medical sciences

Hiroshi Masuhara

Affiliations and Expertise

Department of Applied Physics, Osaka University Osaka, Japan

View additional works by Hiroshi Masuhara

Satoshi Kawata

Affiliations and Expertise

Department of Applied Physics, Osaka University, Osaka, Japan

View additional works by Satoshi Kawata

Nanoplasmonics, 1st Edition


Chapter 1: Magnetic plasmon resonance (A.K. Sarychev et al.).

Chapter 2: Theory of optical transmission through arrays of subwavelength apertures (L. Martín-Moreno et al.).
Chapter 3: Linear and nonlinear optical response of concentric metallic nanoshells (M. Fukui et al.).

Chapter 4: Low-dimensional optical waveguides and wavenumber surface (J. Takahara, T. Kobayashi).


Chapter 5: Specific Raman band shift caused by mechano-chemical effect in enhanced near-field Raman Spectroscopy (H. Watanabe et al.).

Chapter 6: Single molecule sensitivity in surface enhanced Raman scattering using surface plasmon
(M. Futamata, Y. Maruyama).

Chapter 7: Enhanced Raman scattering mediated by metallic surface-particle gap modes (S. Hayashi).

Chapter 8: Surface plasmon enhanced excitation of photofunctional molecules in nanospace towards molecular plasmonics (A. Fujii, A. Ishida).

Chapter 9: Localized surface plasmon resonance enhanced second-harmonic generation (K. Kajikawa et al.).

Chapter 10: Localized surface plasmon resonance-coupled photo-induced luminescence and surface enhanced Raman scattering from isolated single Ag nano-aggregates (T. Itoh et al.).

Chapter 11: Single particle spectroscopic study on surface plasmon resonance of ion-adsorbed gold nanoparticles (T. Asahi, H. Masuhara).


Chapter 12: Enhancement of luminescence in plasmonic crystal devices (T. Okamoto et al.).

Chapter 13: Intrinsic properties due to self-organization of 5nm silver nanocrystals (M.P. Pileni).

Chapter 14 : Gold nanorods: preparation, characterization, and applications to sensing and photonics (S. Yamada, Y. Niidome).

Chapter 15: Optical trapping and assembling of nanoparticles (H. Yoshikawa et al.).

Chapter 16: Femtosecond laser fabrication of three-dimensional metallic micro-nanostructures (H.-B. Sun et al.).

Chapter 17: Nanophotolithography based on surface plasmon interference (T. Ishihara, X. Luo).


Cyber Week Pre-Sale | Use Code CYBOOK15

Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy

Contact Us