Nonmeasurable Sets and Functions

Nonmeasurable Sets and Functions, 1st Edition

Nonmeasurable Sets and Functions, 1st Edition,Alexander Kharazishvili,ISBN9780444516268


Elsevier Science




240 X 165

A new approach to study various properties of nonmeasurable sets and functions.

Print Book + eBook

USD 228.00
USD 380.00

Buy both together and save 40%

Print Book


In Stock

Estimated Delivery Time
USD 190.00

eBook Overview

VST (VitalSource Bookshelf) format

DRM-free included formats : EPUB, Mobi (for Kindle), PDF

USD 190.00
Add to Cart

Key Features

· highlights the importance of nonmeasurable sets (functions) for general measure extension problem.
· Deep connections of the topic with set theory, real analysis, infinite combinatorics, group theory and geometry of Euclidean spaces shown and underlined.
· self-contained and accessible for a wide audience of potential readers.
· Each chapter ends with exercises which provide valuable additional information about nonmeasurable sets and functions.
· Numerous open problems and questions.


The book is devoted to various constructions of sets which are nonmeasurable with respect to invariant (more generally, quasi-invariant) measures. Our starting point is the classical Vitali theorem stating the existence of subsets of the real line which are not measurable in the Lebesgue sense. This theorem stimulated the development of the following interesting topics in mathematics:
1. Paradoxical decompositions of sets in finite-dimensional Euclidean spaces;
2. The theory of non-real-valued-measurable cardinals;
3. The theory of invariant (quasi-invariant)
extensions of invariant (quasi-invariant) measures.

These topics are under consideration in the book. The role of nonmeasurable sets (functions) in point set theory and real analysis is underlined and various classes of such sets (functions) are investigated . Among them there are: Vitali sets, Bernstein sets, Sierpinski sets, nontrivial solutions of the Cauchy functional equation, absolutely nonmeasurable sets in uncountable groups, absolutely nonmeasurable additive functions, thick uniform subsets of the plane, small nonmeasurable sets, absolutely negligible sets, etc. The importance of properties of nonmeasurable sets for various aspects of the measure extension problem is shown. It is also demonstrated that there are close relationships between the existence of nonmeasurable sets and some deep questions of axiomatic set theory, infinite combinatorics, set-theoretical topology, general theory of commutative groups. Many open attractive problems are formulated concerning nonmeasurable sets and functions.


Pure mathematicians and post-graduate students. Especially, those ones whose
research interests lie in set theory, real analysis,
measure theory, general topology , geometry of
Euclidean spaces, group theory.

Alexander Kharazishvili

Affiliations and Expertise

Tbilisi State University, Tbilisi, Republic of Georgia.

Nonmeasurable Sets and Functions, 1st Edition

1. The Vitali theorem.
2. The Bernstein construction.
3. Nonmeasurable sets associated with Hamel bases.
4. The Fubini theorem and nonmeasurable sets.
5. Small nonmeasurable sets.
6. Strange subsets of the Euclidean plane.
7. Some special constructions of nonmeasurable sets.
8. The Generalized Vitali construction.
9. Selectors associated with countable subgroups.
10. Selectors associated with uncountable subgroups.
11. Absolutely nonmeasurable sets in groups.
12. Ideals producing nonmeasurable unions of sets.
13. Measurability properties of subgroups of a given group.
14. Groups of rotations and nonmeasurable sets.
15. Nonmeasurable sets associated with filters.

Appendix 1: Logical aspects of the existence of nonmeasurable sets.
Appendix 2: Some facts from the theory of commutative groups.

Quotes and reviews

"The author has done a very good job writing a useful book on a theme which had not previously been described so thoroughly in the literature." Marek Balcerak (Lódz, Poland) in: Mathematical Reviews (2005d: 28001)
Free Shipping
Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy

Contact Us