Silicon Carbide Biotechnology

Silicon Carbide Biotechnology, 1st Edition

A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications

Silicon Carbide Biotechnology, 1st Edition,Stephen Saddow,ISBN9780123859068

S Saddow   

Elsevier Science

9780123859068 New edition

9780123859075 New edition


229 X 152

Silicon Carbide Biotechnology explores the popular biocompatible semiconductor for advanced biomedical applications, from heart stent coatings and bone implant scaffolds to neurological implants and in vivo biosensors.

Print Book + eBook

USD 243.57
USD 405.95

Buy both together and save 40%

Print Book


In Stock

Estimated Delivery Time
USD 210.00

eBook Overview

VST (VitalSource Bookshelf) format

DRM-free included formats : EPUB, Mobi (for Kindle), PDF

USD 195.95
Add to Cart

Key Features

  • Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists
  • Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials
  • Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices


Silicon Carbide (SiC) is a wide-band-gap semiconductor biocompatible material that has the potential to advance advanced biomedical applications. SiC devices offer higher power densities and lower energy losses, enabling lighter, more compact and higher efficiency products for biocompatible and long-term in vivo applications ranging from heart stent coatings and bone implant scaffolds to neurological implants and sensors.

The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time.

For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo.

This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions.


Biomedical engineers, biochemists, device professionals and related medical specialists searching for a robust biomedical option for implantation with semiconductor effects in terms of selection of SiC materials / sensors / devices / implants for either further research and development and for further product exploitation.

Stephen Saddow


Dr. Saddow’s research interests are to develop wide-bandgap semiconductor materials for high-field and high-power device applications. His most recent work has focused on the use of SiC for Bio, Nano and MEMS applications. He is a visiting professor in Sicily where he conducts analysis and growth studies of 3C-SiC on Si substrates at the Istituto per la Microelettronica e Microsistemi - Consiglio nazionale delle ricerche (IMM-CNR), Catania, Sicily (IT). His ultimate research objective is to develop smart sensors for harsh environments and biomedical applications based on wide band gap semiconductor materials. He is a senior member of the IEEE and has over 100 publications on SiC materials and devices, with nearly half in archived journals.

Affiliations and Expertise

Dept. of Electrical Engineering, College of Engineering and Dept. of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida, USA

Silicon Carbide Biotechnology, 1st Edition

  1. Silicon Carbide Materials for Biomedical Applications
  2. SiC Films and Coatings: Amorphous, Polycrystalline, and Single Crystal Forms
  3. Multifunctional SiC Surfaces: From Passivation to Biofunctionalization
  4. SiC In Vitro Biocompatibility: Epidermal and Connective Tissue Cells
  5. Hemocompatibility Assessment of 3C-SiC for Cardiovascular Applications
  6. Biocompatibility of SiC for Neurological Applications
  7. SiC for Brain-Machine Interface (BMI)
  8. Porous SiC Microdialysis Technology
  9. Biocompatible Sol-Gel Based Nanostructured Hydroxyapatite Coatings on Nano-porous SiC
  10. Silicon Carbide BioMEMS
  11. SiC as a Biocompatible Marker for Cell Labeling
  12. Carbon Based Materials on SiC for Advanced Biomedical Applications
Free Shipping
Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy

Contact Us