Petroleum Rock Mechanics

Petroleum Rock Mechanics, 1st Edition

Drilling Operations and Well Design

Petroleum Rock Mechanics, 1st Edition,Bernt Aadnoy,Reza Looyeh,ISBN9780123855466


Gulf Professional Publishing




229 X 152

This book, a vital tool for ensuring economic benefits in all phases of petroleum reservoir development, explains the fundamentals and applies them to oil-and gas-related drilling and well operation and completion problems

Print Book + eBook

USD 122.97
USD 204.95

Buy both together and save 40%

Print Book


In Stock

Estimated Delivery Time
USD 105.00

eBook Overview

VST (VitalSource Bookshelf) format

DRM-free included formats : EPUB, Mobi (for Kindle), PDF

USD 99.95
Add to Cart

Key Features

  • Clearly applies rock mechanics to on and off shore oil and gas drilling
  • Step by Step approach to the analyze wellbore instabilities
  • Provides worked out examples with solutions to everyday problems


Petroleum Rock Mechanics: Drilling Operations and Well Design covers the fundamentals of solid mechanics and petroleum rock mechanics and their application to oil and gas-related drilling operations and well design. More specifically, it examines the role of formation, strength of rock materials, and wellbore mechanics, along with the impact of in-situ stress changes on wellbore and borehole behavior. Practical examples with solutions and a comprehensive glossary of terminologies are provided. Equations are incorporated into well-known failure criteria to predict stresses and to analyze a range of failure scenarios throughout drilling, well operation, and well completion processes. The book also discusses stress and strain components, principal and deviatoric stresses and strains, materials behavior, the theories of elasticity and inelasticity, probabilistic analysis of stress data, the tensile and shear strength of rocks, wellbore stability, and fracture and collapse behavior for both single and multi-lateral wells. Both inexperienced university students and experienced engineers will find this book extremely useful.


Reservoir Engineers, Production Engineer, Drilling Engineers, Exploration Geophysicists

Bernt Aadnoy

Department of Petroleum Engineering, University of Stavanger, Stavanger, Norway

Affiliations and Expertise

Department of Petroleum Engineering, University of Stavanger, Stavanger, Norway

Reza Looyeh

Affiliations and Expertise

Lead Engineer, Chevron Limited, Pembroke Refinery, UK

Petroleum Rock Mechanics, 1st Edition




About the authors

List of symbols

Chapter 1. Stress/Strain Definitions and Components

1.1. General concept

1.2. Definition of stress

1.3. Stress components

1.4. Definition of strain

1.5. Strain components

Chapter 2. Stress and Strain Transformation

2.1. Introduction

2.2. Transformation principles

2.3. Two-dimensional stress transformation

2.4. Stress transformation in space

2.5. Tensor of stress components

2.6. Strain transformation in space

Chapter 3. Principal and Deviatoric Stresses and Strains

3.1. Introduction

3.2. Principal stresses

3.3. Average and deviatoric stresses

3.4. General interpretation of principal stresses

3.5. Two-dimensional stress analysis

3.6. Properties of strain

Chapter 4. Theory of Elasticity

4.1. Introduction

4.2. Materials behavior

4.3. Hooke's law

4.4. Hooke's law in shear

4.5. Analysis of structures

4.6. Theory of inelasticity

4.7. Constitutive relation for rocks

Chapter 5. Failure Criteria

5.1. Introduction

5.2. Failure criteria for rock materials

5.3. The von mises failure criterion

5.4. Mohr-coulomb failure criterion

5.5. The griffith failure criterion

5.6. Hoek-brown failure criterion

5.7. Druker-prager failure criterion

5.8. Mogi-coulomb failure criterion

Chapter 6. Introduction to Petroleum Rock Mechanics

6.1. Introduction

6.2. Definition and classification of rocks

6.3. Petroleum rock mechanics

6.4. Why study stress in rocks?

6.5. Units of measurement

Chapter 7. Porous Rocks and Effective Stresses

7.1. Introduction

7.2. Anisotropy and inhomogeneity

7.3. Anisotropic rocks, transversal isotropy

7.4. Porous rock

7.5. Formation pore pressure

7.6. Effective stress

7.7. Formation porosity and permeability

Chapter 8. In-Situ Stress

8.1. Introduction

8.2. Definitions

8.3. in-situ principal stresses

8.4. Measurement and estimation of in-situ stresses

8.5. Probabilistic analysis of stress data

8.6. Bounds on in-situ stresses

8.7. Stress directions from fracture traces

Chapter 9. Rock Strength and Rock Failure

9.1. Introduction

9.2. Strength of rock material

9.3. Empirical correlations

9.4. Formation fracture gradient

9.5. Laboratory testing of intact rocks

9.6. Rock tensile strength

9.7. Rock shear strength

Chapter 10. Stresses Around a Wellbore

10.1. Introduction

10.2. State of stresses around a wellbore

10.3. Properties of rock formation around a wellbore

10.4. Equations governing stress analysis

10.5. Analysis of stresses around a wellbore

10.6. Isotropic solution

10.7. Anisotropic solution

Chapter 11. Wellbore Instability Analysis

11.1. Introduction

11.2. Analysis procedure

11.3. Wellbore fracturing pressure

11.4. Wellbore collapse pressure

11.5. Instability analysis of multi-lateral boreholes

11.6. Instability analysis of adjacent boreholes

11.7. Instability analysis of underbalanced drilling

11.8. Shallow fracturing

11.9. General fracturing model

11.10. Compaction analysis for high-pressure, high-temperature reservoirs

11.11. Breakthrough of a relief well into a blowing well

11.12. Fracture model for load history and temperature

11.13. Effects of flow induced stresses

11.14. Sand production modeling

Chapter 12. Wellbore Instability Analysis Using Inversion Technique

12.1. Introduction

12.2. Definitions

12.3. The inversion technique

12.4. Geological aspects

12.5. Analysis constraints

12.6. Inversion from fracture data and image logs

Chapter 13. Wellbore Instability Analysis Using Quantitative Risk Assessment

13.1. Introduction

13.2. Deterministic analysis versus probabilistic assessment

13.3. Why probabilistic assessment?

13.4. Quantitative risk assessment (QRA)

13.5. Quantitative risk assessment of underbalanced drilling

Chapter 14. The Effect of Mud Losses on Wellbore Stability

14.1. Introduction

14.2. Mud losses during drilling

14.3. Interpretation of the leak-off tests

14.4. Future developments for wellbore stability


Appendix A. Mechanical Properties of Rocks

Appendix B. The Poisson's Ratio Effect

Appendix C. Model for the Stress Bridge

Appendix D. Glossary Of Terms


Free Shipping
Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy

Contact Us