Solid Fuel Blending, 1st Edition

Principles, Practices, and Problems

 
Solid Fuel Blending, 1st Edition,David Tillman,Dao Duong,N. Harding,ISBN9780123809322
 
 
 

  &      &      

Butterworth-Heinemann

9780123809322

9780123809339

352

234 X 155

A complete guide to the principles, practices, and problems encountered in solid fuels blending operations.

Print Book + eBook

USD 134.97
USD 224.95

Buy both together and save 40%

Print Book

Hardcover

In Stock

Estimated Delivery Time
USD 99.95

eBook
eBook Overview

VST (VitalSource Bookshelf) format

DRM-free included formats : EPUB, Mobi (for Kindle), PDF

USD 125.00
Add to Cart
 
 

Key Features

• One stop source to solid fuel types and blending processes
• Evaluate combustion systems and calculate their efficiency
• Recognize the  interactions between fuels and their potential energy out put
• Be aware of the Environmental Aspects of Fuel Blending

Description

Create affordable solid fuel blends that will burn efficiently while reducing the carbon footprint. Solid Fuel Blending Handbook: Principles, Practices, and Problems describes a new generation of solid fuel blending processes. The book includes discussions on such topics as flame structure and combustion performance, boiler efficiency, capacity as influenced by flue gas volume and temperature, slagging and fouling, corrosion, and emissions. Attention is given to the major types of combustion systems including stokers, pulverized coal, cyclone, and fluidized bed boilers. Specific topics considered include chlorine in one or more coals, alkali metals (e.g., K, Na) and alkali earth elements, and related topics.

Coals of consideration include Appalachian, Interior Province, and Western bituminous coals; Powder River Basin (PRB) and other subbituminous coals; Fort Union and Gulf Coast lignites, and many of the off-shore coals (e.g., Adaro coal, an Indonesian subbituminous coal with very low sulfur; other off-shore coals from Germany, Poland, Australia, South Africa, Columbia, and more). Interactions between fuels and the potential for blends to be different from the parent coals will be a critical focus of this of the book.

Readership

Power Engineers, Electrical Engineers, Energy Engineers, Energy Economist, Environmental Engineers, Mechanical Engineers, and Industrial Engineers

David Tillman

Affiliations and Expertise

Easton, USA

View additional works by David Tillman
Information about this author is currently not available.

N. Harding

Affiliations and Expertise

NS Harding & Associates, Salt Lake City, USA

Solid Fuel Blending, 1st Edition

Dedication

Preface

Acknowledgments

Chapter 1. Introduction to Fuel Blending

1.1 Overview

1.2 Fuel Blending for Solid Fuels

1.3 Objectives for Blending

1.4 Blending for the Steel Industry—The Development of Petrology

1.5 Typical Fuel Blends

1.6 Blends and Firing Systems

1.7 Conclusions

Chapter 2. Principles of Solid Fuel Blending

2.1 Introduction: Blending for Dollars

2.2 Designing the Most Favorable Fuel

2.3 Influences on the Most Favorable Fuel Blend

2.4 Developing a Fuel Blending Strategy

2.5 Formation of Pollutants

2.6 Fuel Blending Characteristics Influencing Deposition

2.7 Fuel Blending and Corrosion

2.8 Blending’s Impact on the Physical Characteristics of Solid Fuels

2.9 Management and Control of Fuel Blending

2.10 Conclusions

Chapter 3. Blending Coal on Coal

3.1 Introduction and Basic Principles

3.2 Blending of Coal for Combustion and/or Gasification Purposes

3.3 Combustion and Gasification Processes

3.4 Coals Used in Commercial Applications and Their Blending Potential

3.5 Kinetics and the Analysis of Coal Blend Reactivity

3.6 The Behavior of Inorganic Constituents

3.7 Managing the Coal-on-Coal Blending Process

3.8 Conclusions

Chapter 4. Blending Coal with Biomass

4.1 Introduction

4.2 Biomass and Coal Blending

4.3 Cofiring: Reducing a Plant’s Carbon Footprint

4.4 Other Reasons for Cofiring

4.5 Cofiring in the United States and Europe

4.6 Characteristics of Biomass

4.7 Reactivity Measures for Biomass

4.8 Ratios from Other Measures

4.9 Comparisons of Biomass to Coal

4.10 The Chemistry of Cofiring

4.11 Burning Profiles of Biomass–Coal Blends

4.12 Implications for Biomass–Coal Cofiring Systems

4.13 Case Studies in Cofiring

4.14 Conclusions

Chapter 5. Waste Fuel–Coal Blending

5.1 Introduction

5.2 Tire-Derived Fuel

5.3 Petroleum Coke

5.4 Waste Plastics and Paper

5.5 Hazardous Wastes

5.6 Conclusions

Chapter 6. Environmental Aspects of Fuel Blending

6.1 Introduction

6.2 Regulatory Climate as It Influences Blending and Cofiring

6.3 Blending for Environmental and Economic Reasons

6.4 Areas of Concern

6.5 Ash Management for Power Plants

6.6 Blending for Emission Benefits

6.7 Cofiring Biomass with Coal

6.8 Conclusions

Chapter 7. Modeling and Fuel Blending

7.1 Introduction

7.2 The Purposes of Modeling

7.3 Specific Applications of Modeling

7.4 Principles of Physical Modeling

7.5 The Basic Approach of Computational Fluid Dynamics Modeling

7.6 Modeling for Blending Purposes

7.7 Limitations of Modeling

7.8 Conclusions

Chapter 8. Institutional Issues Associated with Coal Blending

8.1 Introduction

8.2 Institutional Issues Associated with Fuel Blending

8.3 Economic Considerations Associated with Blending

8.4 Process Modifications

8.5 Future U.S. and World Coal Production

8.6 Conclusions

Index

 
 
Free Shipping
Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy
FAQ

Contact Us