»
Genetically Modified Plants
 
 

Genetically Modified Plants, 1st Edition

Assessing Safety and Managing Risk

 
Genetically Modified Plants, 1st Edition,Roger Hull,G. Tzotzos,Graham Head,ISBN9780123741066
 
 
 

  &      &      

Academic Press

9780123741066

9780080920764

256

229 X 152

Print Book + eBook

USD 94.74
USD 157.90

Buy both together and save 40%

Print Book

Hardcover

In Stock

Estimated Delivery Time
USD 81.95

eBook
eBook Overview

VST format:

DRM Free included formats: EPub, Mobi, PDF

USD 75.95
Add to Cart
 
 

Key Features

* Discusses traditional and future technology for genetic modification
* Compares conventional non-GM approaches and genetic modification
* Presents a risk assessment methodology for GM techniques
* Details mitigation techniques for human and environmental effects

Description

A transgenic organism is a plant, animal, bacterium, or other living organism that has had a foreign gene added to it by means of genetic engineering. Transgenic plants can arise by natural movement of genes between species, by cross-pollination based hybridization between different plant species (which is a common event in flowering plant evolution), or by laboratory manipulations by artificial insertion of genes from another species. Methods used in traditional breeding that generate transgenic plants by non-recombinant methods are widely familiar to professional plant scientists, and serve important roles in securing a sustainable future for agriculture by protecting crops from pest and helping land and water to be used more efficiently.

There is worldwide interest in the biosafety issues related to transgenic crops because of issues such as increased pesticide use, increased crop and weed resistance to pesticides, gene flow to related plant species, negative effects on nontarget organisms, and reduced crop and ecosystem diversity. This book is intended to provide the basic information for a wide range of people involved in the release of transgenic crops. These will include scientists and researchers in the initial stage of developing transgenic products, industrialists, and decision makers. It will be of particular interest to plant scientists taking up biotechnological approaches to agricultural improvement for developing nations.

Readership

plant scientists studying genetically modified crops; agricultural engineers; agronomists; researchers; industrialists; lawyers; students; regulators

Roger Hull

Roger Hull graduated in Botany from Cambridge University in 1960, and subsequently studied plant virus epidemiology at London University’s Wye College, gaining a PhD in 1964. He lectured on agricultural botany there between 1960 and 1965. He was seconded to Makerere University in Kampala, Uganda in 1964 where he taught, and learnt tropical agricultural botany and studied the epidemiology of groundnut rosette disease. By watching aphids land on groundnut plants he gained an understanding of the edge effect of spread of virus into the field. In 1965 Roger Hull joined Roy Markham at the ARC Virus Research Unit in Cambridge, UK where he worked on biophysical and biochemical characterization of a range of viruses, especially Alfalfa mosaic virus. This work continued when he moved to the John Innes Institute, Norwich with Roy Markham in 1968. There Dr Hull became a project leader and deputy head of the Virus Research Department. In 1974 he spent a sabbatical year with Bob Shepherd in the University of California, Davis where he worked on the characterization of cauliflower mosaic virus. There he was introduced to the early stages of molecular biology which changed the direction of his research. On returning to the John Innes Institute he applied a molecular biological approach to the study of cauliflower mosaic virus elucidating that it replicated by reverse transcription, the first plant virus being shown to do so. Involvement with the Rockefeller Rice Biotechnology Program reawakened his interest in tropical agricultural problems and he led a large group studying the viruses of the rice tungro disease complex. He also promoted the use of transgenic technology to the control of virus diseases and was in the forefront in discussing biosafety issues associated with this approach. Moving from rice to bananas (plantains) his group was among those who discovered that the genome of banana streak badnavirus was integrated into the host genome and in certain cultivars was activated to give episomal infection - another first for plant viruses. He retired at the statutory age in 1997. Dr Hull is an Honorary Professor at Peking and Fudan Universities, a Doctoris Honoris Causa at the University of Perpignan, France, and a Fellow of the American Phytopathological Society. He is an Emeritus Fellow at the John Innes Centre where he continued research on banana streak virus for five or more years after retirement. He has published over 225 peer-reviewed papers on plant virology, many reviews and four books including the previous edition of Plant Virology and Comparative Plant Virology. In retirement Roger Hull became involved in promoting the uptake of transgenic technology by developing countries as one approach to alleviating food insecurity. He is on the International faculty of e-learning diploma course training decision makers, mainly in developing countries, in plant biotechnology regulation. His other interests are gardening, bird watching, travelling and his children and grandchildren.

Affiliations and Expertise

John Innes Center, Norwich, UK

View additional works by Roger Hull

G. Tzotzos

Affiliations and Expertise

United Nations Industrial Development Organization (UNIDO), Austria

Graham Head

Affiliations and Expertise

Monsanto LLC, St. Louis, MO, USA

Genetically Modified Plants, 1st Edition

Chapter 1. INTRODUCTION
Conventional Approach
Improvement
Effects
Risk Assessment Methodologies
Technology

Chapter 2. RISK SOURCE CHARACTERISATION
Properties of donor organism
Properties of recipient organism
DNA
Selectable Markers

Chapter 3. EXPOSURE ASSESSMENT
Release sites
Performance
Biological Properties
Impact on Human Health
Impact on Animals
Impact on the Environment
Case Studies

Chapter 4. RISK ASSESSMENT & RISK MANAGEMENT ? HUMAN HEALTH
Allergies
Unintentional Toxins
Resistance of Microbes to Antibiotics
Mitigation and Containment Approaches
Case Studies

Chapter 5. RISK ASSESSMENT & RISK MANAGEMENT ? ENVIRONMENT
Agricultural Environment
Peri-agricultural and ?natural? environment
Spread of Transgenes to non-GM crops
Gene Flow to Weeds and Feral Crop Species
Impact on Biodiversity of Crop Species and Wild Flora and Fauna
Generation of ?Superweeds?
Case Studies
Stewardship Procedures
Co-existence of GM and non-GM crops
Testing for GM
Modifying Agronomic Practices

Chapter 6. REGULATORY SYSTEMS
Current framework of GM regulation
International Conventions and Agreements
Major Regulatory Systems
Major Sources of Information.

Chapter 7 THE POLITICS OF GM TECHNOLOGY
Development of Regulation of GM Crops
Risk Perception
Understanding the Scientific Process
Bioethical Aspects
Roles of NGOs, the media and industry.

Chapter 8 THE FUTURE OF GM TECHNOLOGY
The Future of GM Products
Technology
Evolution of Regulatory Structures

Appendices
Further Reading List
Useful Internet Sites

Quotes and reviews

"Overall, the authors have done a highly commendable job of compiling, organizing, and explaining in clear, unbiased language what is involved in getting a GM product through the current national and international regulatory schemes."     -- Professor Kent J. Bradford, Seed Biotechnology Center, University of California, Davis, CA, USA

 
 
Cyber Monday SALE Upto 50 Percent OFF | Use Code CYBER14
Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy
FAQ

Contact Us