Understanding Molecular Simulation

Understanding Molecular Simulation, 2nd Edition

From Algorithms to Applications

Understanding Molecular Simulation, 2nd Edition,Daan Frenkel,Berend Smit,ISBN9780122673511


Academic Press




229 X 152

Print Book + eBook

USD 124.20
USD 207.00

Buy both together and save 40%

Print Book


In Stock

Estimated Delivery Time
USD 106.00

eBook Overview

VST format:

DRM Free included formats: PDF

USD 101.00
Add to Cart


Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text.

Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on:

· Transition path sampling and diffusive barrier crossing to simulaterare events
· Dissipative particle dynamic as a course-grained simulation technique
· Novel schemes to compute the long-ranged forces
· Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations
· Multiple-time step algorithms as an alternative for constraints
· Defects in solids
· The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules
· Parallel tempering for glassy Hamiltonians

Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.


Graduate students in physics and materials science departments studying molecular simulation techniques; scientists in the fields of polymers, materials science, and applied physics.

Daan Frenkel

Daan Frenkel is based at the FOM Institute for Atomic and Molecular Physics and at the Department of Chemistry, University of Amsterdam. His research has three central themes: prediction of phase behavior of complex liquids, modeling the (hydro) dynamics of colloids and microporous structures, and predicting the rate of activated processes. He was awarded the prestigious Spinoza Prize from the Dutch Research Council in 2000.

Affiliations and Expertise

FOM Institute for Atomic and Molecular Physics, The Netherlands

Berend Smit

Berend Smit is Professor at the Department of Chemical Engineering of the Faculty of Science, University of Amsterdam. His research focuses on novel Monte Carlo simulations. Smit applies this technique to problems that are of technological importance, particularly those of interest in chemical engineering.

Affiliations and Expertise

University of Amsterdam, Amsterdam, The Netherlands

Quotes and reviews

"…brilliantly maintains a balance between explaining the physical phenomena and performing computations. Its marvelous writing style invites scientists and students to deepen their knowledge of MD simulations."--ComputingReviews.com, January 11, 2013
"... this book brilliantly lays down the scientific foundations of the simulational approach ..."--
Prof. Kurt Binder in Physics World, 1997
"... a treasure. The book is a marvellous mix of just enough formalism with an informal and readable style, sufficient detail to understand methodological advances, appropriate mathematics ..."--Prof. Mark A. Ratner in Physics Today, 1997

Free Shipping
NOTE: We are upgrading our eBook operations; please allow up to 1-2 days for delivery of your eBook order.