»
Ubiquitin and Protein Degradation, Part B
 
 

Ubiquitin and Protein Degradation, Part B, 1st Edition

 
Ubiquitin and Protein Degradation, Part B, 1st Edition,Raymond Deshaies,ISBN9780121828042
 
 
 

R Deshaies   

Academic Press

9780121828042

952

229 X 152

The newest volume in the critically acclaimed laboratory standard Methods in Enzymology

Print Book

Hardcover

In Stock

Estimated Delivery Time
USD 210.00
 
 

Key Features

*Second part of the Ubiquitin and Protein Degration series
*Topics include: E1 Enzymes, E2 Enzymes, E3 Enzymes, Proteasomes, and Isopeptidases

Description

Ubiquitin and Protein Degradation, Part B will cover chemical biology, ubiquitin derivatives and ubiquitin-like proteins, deubiquitinating enzymes, proteomics as well as techniques to monitor protein degradation. The chapters are highly methodological and focus on application of techniques.

Readership

Biochemists, biophysicists, cell biologists, molecular biologists, geneticists, developmental biologists

Raymond Deshaies

Affiliations and Expertise

Howard Hughes Medical Institute, Caltech, Pasadena, CA, USA

Ubiquitin and Protein Degradation, Part B, 1st Edition

SECTION I. UBIQUITIN AND UBIQUITIN DERIVATIVES

Chapter 1. Chemical and genetic strategies for manipulating polyubiquitin chain structure; Chapter 2. Controlled synthesis of polyubiquitin chains; Chapter 3. Derivitization of the C-terminus of ubiquitin and ubiquitin-like proteins using
Intein chemistry: Methods & Uses; Chapter 4. Preparation, characterization, and use of tagged ubiquitin; Chapter 5. Knocking out ubiquitin proteasome system function in vivo and in vitro with genetically-encodable tandem ubiquitin; Chapter 6. Production of anti-polyubiquitin antibodies and their use for characterization and isolation of polyubiquitinated proteins; Chapter 7. Application of Ubiquitin Immunohistochemistry to Diagnosis of Disease; Chapter 8. Mechanism-based proteomics tools based on ubiquitin and ubiquitin-like proteins: crystallography, activity profiling and protease identification

SECTION II. UBIQUITIN-BINDING DOMAINS

Chapter 9. Identification and characterization of modular domains that bind ubiquitin; Chapter 10. Analysis of Ubiquitin chain-binding proteins by two-hybrid methods; Chapter 11. Quantifying protein-protein interactions in the ubiquitin pathway by surface plasmon resonance; Chapter 12. Using NMR spectroscopy to monitor ubiquitin chain conformation and interactions with ubiquitin-binding domains; Chapter 13. Analysis of ubquitin-dependent protein sorting within the endocytic pathway in Saccharomyces cerevisiae

SECTION III. METHODS TO STUDY THE PROTEASOME

Chapter 14. Preparation of ubiquitinated substrates by the PY motif-insertion method for
monitoring 26S proteasome activity; Chapter 15. Large- and Small-scale Purification of Mammalian 26S Proteasomes

SECTION IV. IDENTIFICATION AND CHARACTERIZATION OF SUBSTRATES AND UBIQUITIN LIGASES

Chapter 16. Is my protein ubiquitinated?; Chapter 17. Experimental tests to definitively determine ubiquitination of a substrate; Chapter 18. Identification of ubiquitination sites and determination of ubiquitin-chain architectures by mass spec; Chapter 19. Mapping of ubiquitination sites on target proteins; Chapter 20. Identification of substrates for F-box proteins; Chapter 21. Fusion -based strategies to identify genes involved in degradations of a specific
substrate; Chapter 22. Bisubstrate kinetic analysis of an E3-ligase dependent ubiquitylation reaction; Chapter 23. Screening of Tissue Microarrays for Ubiquitin Proteasome System Components in Tumors; Chapter 24. Structure-based approaches to create new E2-E3 enzyme pairs

SECTION V. GENOME- AND PROTEOME-WIDE APPROACHES TO IDENTIFY SUBSTRATES AND ENZYMES

Chapter 25. Proteomic analysis of ubiquitin conjugates in yeast; Chapter 26. Two-Step Affinity Purification of Multiubiquitylated Proteins from
Saccharomyces cerevisiae; Chapter 27. Identification of SUMO-Protein Conjugates; Chapter 28. Identification of Ubiquitin Ligase Substrates by in Vitro Expression Cloning; Chapter 29. In vitro screening for substrates of the N-end rule-dependent ubiquitylation; Chapter 30. Genome-wide surveys for phosphorylation–dependent substrates of SCF ubiquitin ligases; Chapter 31. Yeast genomics in the elucidation of endoplasmic reticulum (ER) quality control and associated protein degradation (ERQD); Chapter 32. Mechanism-based proteomics tools based on ubiquitin and ubiquitin-like
proteins: Synthesis of active site directed probes

SECTION VI. REAL TIME/NON-INVASIVE TECHNOLOGIES

Chapter 33. Application and analysis of the GFPu family of ubiquitin-proteasome system
reporters; Chapter 34. Monitoring of Ubiquitin-Dependent Proteolysis with Green Fluorescent
Protein Substrates; Chapter 35. Monitoring proteasome activity in cellulo and in living animals by bioluminescent imaging: technical considerations for design and use of genetically-encoded reporters; Chapter 36. Bioluminescent imaging of ubiquitin ligase activity: measuring Cdk2 activity through changes in p27 turnover; Chapter 37. Monitoring the distribution and dynamics of proteasomes in living cells

SECTION VII. SMALL MOLECULE INHIBITORS

Chapter 38. Identifying Small Molecules Inhibitors of the Ubiquitin-Proteasome Pathway
in Xenopus Extracts; Chapter 39. Development and characterization of proteasome inhibitors; Chapter 40. Screening for selective small molecule inhibitors of the proteasome using activity based probes; Chapter 41. Development of E3-substract (MDM2-p53) binding inhibitors: structural
aspects; Chapter 42. Druggability of SCF Ubiquitin Ligase Protein Interfaces; Chapter 43. Overview on approaches for screening for ubiquitin ligase inhibitors; Chapter 44. A homogeneous FRET assay system for multi-ubiquitin chain assembly and
disassembly; Chapter 45. Assays for High-throughput screening of E2 and E3 ubiquitin ligases; Chapter 46. Quantitative Assays for MDM2 Ubiquitin Ligase Activity and Other Ubiquitin-Utilizing Enzymes in Inhibitor Discovery; Chapter 47. High-throughput screening for inhibitors of the Skp2-Cks1 interaction; Chapter 48. In vitro SCFb-Trcp1-Mediated IkBa Ubiquitination Assay for High Throughput Screen; Chapter 49. High throughput screening for inhibitors of the E3 ubiquitin ligase APC

SECTION VIII. GENERALLY APPLICABLE TECHNOLOGIES

Chapter 50. The Split-Ubiquitin Sensor: Measuring interactions and conformations of proteins in vivo; Chapter 51. Heat-Inducible Degron and the making of codintional mutants; Chapter 52. Ectopic targeting of substrates to the ubiquitin pathway; Chapter 53. Chimeric Molecules to Target Proteins for Ubiquitination and Degradation

Quotes and reviews

Praise for the Series:
@quote:"Incomparably useful."
@source:--ANALYTICAL BIOCHEMISTRY

@quote:"The Methods in Enzymology series represents the gold standard."
@source:--NEUROSCIENCE
 
 
Free Shipping
Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy
FAQ