Energy Optimization in Process Systems, 1st Edition

 
Energy Optimization in Process Systems, 1st Edition,Stanislaw Sieniutycz,Jacek Jezowski,ISBN9780080451411
 
 
 

  &      

Elsevier Science

9780080451411 New edition

9780080914428 New edition

768

240 X 165

Print Book + eBook

USD 357.00
USD 595.00

Buy both together and save 40%

Print Book

Hardcover

In Stock

Estimated Delivery Time
USD 305.00

eBook
eBook Overview

VST format:

DRM Free included formats: EPub, Mobi, PDF

USD 290.00
Add to Cart
 
 

Key Features

• Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory
• Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems
• Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions

Description

Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors.

Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs.

Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration.

Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios.

• Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory
• Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems
• Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions

Readership

Graduate students and researchers in chemical, mechanical, materials and environmental engineering, as well as those engaged in system theory, operation research, applied mathematics, applied physics and chemistry.

Stanislaw Sieniutycz

Affiliations and Expertise

Warsaw University of Technology, Faculty of Chemical and Process Engineering, Poland

View additional works by Stanislaw Sieniutycz

Jacek Jezowski

Affiliations and Expertise

Deceased. Rzeszow University of Technology, Poland

View additional works by Jacek Jezowski

Energy Optimization in Process Systems, 1st Edition

Preface (with Acknowledgements)
Chapter 1. Brief review of static optimization methods
Chapter 2. Dynamic optimization problems
Chapter 3. Optimization of thermal engines and heat pumps at steady states
Chapter 4. Hamiltonian optimization of imperfect cascades
Chapter 5. Maximum power from solar energy
Chapter 6. Hamilton-Jacobi-Bellman theory of energy systems
Chapter 7. Numerical optimization in allocation, storage and recovery of thermal energy and resources
Chapter 8. Optimal control of separation processes
Chapter 9. Optimal decisions for chemical and electrochemical reactors
Chapter 10. Energy limits and evolution in biological systems
Chapter 11. Systems theory in thermal and chemical engineering
Chapter 12. Heat integration within process integration
Chapter 13. Maximum heat recovery and its consequences for process system design
Chapter 14. Targeting and supertargeting in heat exchanger network (HEN) design
Chapter 15. Minimum utility cost (MUC) target by optimization approaches
Chapter 16. Minimum number of units (MNU) and minimum total surface area (MTA) targets
Chapter 17. Simultaneous HEN targeting for total annual cost
Chapter 18. Heat exchanger network synthesis
Chapter 19. Heat exchanger network retrofit
Chapter 20. Approaches to water network design
References
Glossary of symbols
Index
 
 
Free Shipping
Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy
FAQ