»
Advances in Damage Mechanics: Metals and Metal Matrix Composites With an Introduction to Fabric Tensors
 
 

Advances in Damage Mechanics: Metals and Metal Matrix Composites With an Introduction to Fabric Tensors, 2nd Edition

 
Advances in Damage Mechanics: Metals and Metal Matrix Composites With an Introduction to Fabric Tensors, 2nd Edition,George Voyiadjis,Peter Kattan,ISBN9780080446882
 
 
 

  &      

Elsevier Science

9780080446882

9780080463674

740

240 X 165

Print Book + eBook

USD 381.00
USD 635.00

Buy both together and save 40%

Print Book

Hardcover

In Stock

Estimated Delivery Time
USD 325.00

eBook
eBook Overview

VST format:

DRM Free included formats: PDF

USD 310.00
Add to Cart
 
 

Key Features

· Systematic treatment of damage mechanics in composite materials
· Includes special and advanced topics
· Includes basic principles of damage mechanics
· Includes new experimental data that appears in print for the first time
· Covers both metals and metal matrix composite materials
· Includes new chapters on fabric tensors
· Second edition includes four new chapters

Description

The book presents the principles of Damage Mechanics along with the latest research findings. Both isotropic and anisotropic damage mechanisms are presented. Various damage models are presented coupled with elastic and elasto-plastic behavior. The book includes two chapters that are solely dedicated to experimental investigations conducted by the authors. In its last chapter, the book presents experimental data for damage in composite materials that appear in the literature for the first time.

Readership

Researchers in Engineering, Mechanics, Mechanical Engineering, Civil Engineering and Materials Science. Also suitable for Graduate Students in Engineering Mechanics, Mechanical Engineering, Civil Engineering and Materials Science.

George Voyiadjis

George Z. Voyiadjis is the Boyd Professor at the Louisiana State University, in the Department of Civil and Environmental Engineering. This is the highest professorial rank awarded by the Louisiana State University System. He joined the faculty of the University of Louisiana State University in 1980. Voyiadjis’ primary research interest is in damage mechanics of metals, metal matrix composites, and ceramics with emphasis on the theoretical modeling, numerical simulation of material behavior, and experimental correlation. Dr. Voyiadjis’ research has been performed on developing numerical models that aim at simulating the damage and dynamic failure response of advanced engineering materials and structures under high-speed impact loading conditions.
He has over 164 referred journal articles and 14 books (8 as editor) to his credit. Over forty graduate students (21 Ph. D.) completed their degrees under his direction. He has also supervised eleven postdoctoral associates. Voyiadjis has been extremely successful in securing more than $8.0 million in research funds as a principal investigator from the National Science Foundation, the Department of Defence, the Air Force Office of Scientific Research, the Department of Transportation, and major companies such as IBM, and Martin Marietta.
He has been invited to give theme presentations and lectures in many countries around the world. He has also been invited as guest editor in numerous volumes of the Journal of Computer Methods in Applied Mechanics and Engineering, International Journal of Plasticity, Journal of Engineering Mechanics of the ASCE, and Journal of Mechanics of Materials. These special issues focus in the areas of damage mechanics, structures, fracture mechanics, localization, and bridging of length scales. He is currently a Fellow in the American Society of Civil Engineers, the American Society of Mechanical Engineers, and the American Academy of Mechanics.

Affiliations and Expertise

Louisiana State University, Department of Civil and Environmental Engineering, Baton Rouge, U.S.A.

View additional works by George Z. Voyiadjis

Peter Kattan

Peter I. Kattan has a PhD in Civil Engineering from Louisiana State University. He has written three books on damage mechanics, one book on finite elements, and one book on composite materials. His research work is currently focused on damage mechanics with fabric tensors and the physical characterization of micro-crack distributions and their evolution. He has published extensively on the theory of plates and shells, constitutive modelling of inelastic materials and damage mechanics. He is currently a Visiting Professor at Louisiana State University in Baton Rouge, Louisiana.

Affiliations and Expertise

Louisiana State University, College of Engineering, Baton Rouge, U.S.A.

Advances in Damage Mechanics: Metals and Metal Matrix Composites With an Introduction to Fabric Tensors, 2nd Edition

Chapter 1. Introduction

Part I: Isotropic Damage Mechanics - Scalar Formulation
Chapter 2. Uniaxial Tension in Metals

Chapter 3. Uniaxial Tension in Elastic Metal Matric Composites

Chapter 4. Uniaxial Tension in Elasto-Plastic Metal Matric Composites: Vector Formulation of the Overall Approach

Part II: Anisotropic Damage Mechanics - Tensor Formulation
Chapter 5. Damage and Elasticity in Metals

Chapter 6. Damage and Plasticity in Metals

Chapter 7. Metal Matrix Composites - Overall Approach

Chapter 8. Metal Matrix Composites - Local Approach

Chapter 9. Equivalence of the Overall and Local Approaches

Chapter 10. Metal Matrix Composites - Local and Interfacial Damage

Chapter 11. Symmetrization of the Effective Stress Tensor

Chapter 12. Experimental Damage Investigation

Chapter 13. High Cyclic Fatigue Damage for Uni-Directional Metal Matrix Composites

Chapter 14. Anisotropic Cyclic Damage-Plasticity Models for Metal Matrix Composites

Part III: Advanced Topics in Damage Mechanics
Chapter 15. Damage in Metal Matrix Composites Using the Generalized Model Cells

Chapter 16. The Kinematics of Damage for Finite-Strain Elasto-Plastic Solids

Chapter 17. A Coupled Anisotropic Damage Model for the Inelastic Response of Composite Materials

Part IV: Damage Mechanics and Fabric Tensors
Chapter 18. Damage Mechanics and Fabric Tensors

Chapter 19. Continuum Approach to Damage Mechanics of Composite Materials with Fabric Tensors

Chapter 20. Micromechanical Approach to Damage Mechanics of Composite Materials with Fabric Tensors

Chapter 21. Experimental Study and Fabric Tensor Quantification of Micro-Crack Distributions in Composite Materials
 
 
Back To School Sale | Use Promo Code BTS14
Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy
FAQ