»
Rotating Shell Dynamics
 
 

Rotating Shell Dynamics, 1st Edition

 
Rotating Shell Dynamics, 1st Edition,Hua Li,Khin-Yong Lam,Teng -Yong Ng,ISBN9780080444772
 
 
 

  &      &      

Elsevier Science

9780080444772

9780080455693

284

240 X 165

Print Book + eBook

USD 222.00
USD 370.00

Buy both together and save 40%

Print Book

Hardcover

In Stock

Estimated Delivery Time
USD 180.00

eBook
eBook Overview

VST format:

DRM Free included formats: PDF

USD 190.00
Add to Cart
 
 

Key Features

·The first monograph to provide a detailed description of rotating shell dynamics
·Dynamic problems such as free vibration and dynamic stability are examined in detail, for basic shells of revolutions

Description

There are numerous engineering applications for high-speed rotating structures which rotate about their symmetric axes. For example, free-flight sub-munition projectiles rotate at high speeds in order to achieve an aerodynamically-stable flight.

This is the first book of its kind to provide a comprehensive and systematic description of rotating shell dynamics. It not only provides the basic derivation of the dynamic governing equations for rotating shells, but documents benchmark results for free vibration, critical speed and parametric resonance. It is written in a simple and clear manner making it accessible both the expert and graduate student.

Readership

Researchers and practitioners in aeronautics, astronautics, mechanical and civil engineering

Hua Li

Affiliations and Expertise

Institute of High Performance Computing, Singapore

Khin-Yong Lam

Affiliations and Expertise

National University of Singapore

Teng -Yong Ng

Affiliations and Expertise

Nanyang Technical University, Singapore

Rotating Shell Dynamics, 1st Edition

Chapter 1. Introduction
1.1 Rotating Shells of Revolution
1.2 Historical Development of the Dynamics of Shells
1.3 About This Monograph


Chapter 2. Fundamental Theory of Rotating Shells of Revolution
2.1 Basic Considerations and Assumptions
2.2 Shell Kinematic Strain-Displacement Relations
2.3 Resultant Stress-Strain Relations in Constitutive Shell Models
2.4 Governing Equations of Motion
2.5 Eigenvalue Analysis of Boundary Value Problems


Chapter 3. Free Vibration of Thin Rotating Cylindrical Shells
3.1 Introduction
3.2 Theoretical Development: Rotating Thin Cylindrical Shell
3.3 Numerical Implementation
3.3.1 Galerkin’s Method (Characteristic Beam Functions)
3.3.2 Convergence Characteristics and Numerical Validation
3.4 Frequency Characteristics
3.4.1 Influence of Coriolis and Centrifugal Effects
3.4.2 Different Thin Shell Theories
3.4.3 Influence of Rotating Velocity
3.4.4 Influence of Length and Thickness
3.4.5 Influence of Layered Configuration of Composites
3.4.6 Influence of Boundary Condition
3.4.7 Discussion on Modal Wave Numbers
Appendix


Chapter 4. Free Vibration of Thin Rotating Conical Shells
4.1 Introduction
4.2 Theoretical Development: Rotating Conical Shell
4.3 Numerical Implementation
4.3.1 Assumed-Mode Method and Generalised Differential Quadrature
4.3.2 Convergence Characteristics and Numerical Validation
4.4 Frequency Characteristics
4.4.1 Influence of Rotating Velocity
4.4.2 Influence of Cone Angle
4.4.3 Influence of Length and Thickness
4.4.4 Influence of Orthotropy and Layered Configuration of Composites
4.4.5 Influence of Boundary Condition
4.4.6 Influence of Initial Stress
4.4.7 Discussion on Wave Number
Appendices


Chapter 5. Free Vibration of Thick Rotating Cylindrical Shells
5.1 Introduction
5.2 Natural Frequency Analysis by Mindlin Shell Theory
5.2.1 Rotating Mindlin Shell Theory - Development
5.2.2 Numerical Validation and Comparison
5.2.3 Frequency Characteristics
5.3 Analysis of Vibrational Mode by FEM with Nonlinear Kinematics
5.3.1 Classification of 3-D Modes of Thick Rotating Cylindrical Shells
5.3.2 Numerical Implementation
5.3.3 Influence of Rotation on Frequencies of Various 3-D Modes


Chapter 6. Critical Speed and Dynamic Stability of Thin Rotating Isotropic Cylindrical Shells
6.1 Introduction
6.2 Theoretical Development: Axially Loaded Rotating Shells
6.3 Numerical Implementation
6.3.1 Critical Speed Analysis
6.3.2 Dynamic Stability Analysis
6.4 Critical Speeds and Instability Regions
6.4.1 Influence of Axial Loading on Critical Speeds
6.4.2 Parametric Studies on Dynamic Stability


References

Author Index

Subject Index
 
 
Back To School Sale | Use Promo Code BTS14
Shop with Confidence

Free Shipping around the world
▪ Broad range of products
▪ 30 days return policy
FAQ