Thomas Weinhart

Thomas Weinhart

Thomas Weinhart studied Mathematics at the Technische Universität München in Germany (B.Sc. in 2004), and at Virginia Tech in the USA (M.Sc. in 2005 and Ph.D. in 2009). His interests lie in numerical and analytical material modelling. His research is based on applying concepts of applied mathematics to the field of granular mechanics.He is working on improved material models for particulates, developing microscopic contact laws between individual particles, as well as rheological laws for macroscopic continuous flows. One of these rheological laws now provides the basis for a shallow-water model of granular avalanches; another law describes the mechanism of particle segregation in granular two-phase flows. He has also worked on several numerical improvements to the Discrete Particle Method, such as steady inflow and complex boundary conditions. He is recognised in the granular field for having developed a new and efficient technique to couple micro- and macro-scale models for particulate flows, and for having developed implementations for the Discrete Particle Method and the Finite Element Method. In particular MercuryDPM is now a well-used open-source tool in the granular community, and is utilised by industry through our spin-off company MercuryLab.His knowledge of particulate systems on both the micro- and macro-scale and their coupling has led to many successful collaborations with experimental and other modelling groups. He further works on numerical methods for simulating transport phenomena, such as error estimators which he uses for adaptive mesh refinement in finite element methods.

Affiliations and Expertise

Multi Scale Mechanics, CTW and MESA+, University of Twente, The Netherlands

Book

Authors: Stefan Luding & Anthony Thornton Release Date: 01 Sep 2017
Print Book:
USD 85.00
USD 100.00